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I. INTRODUCTION

Global magnetospheric-ionospheric coupling remains one of the most impor-
tant topics in space research, particularly since the fonosphere can exert
feedback on the magnetosphere. Energy and momentum input to the high-latitude
ionosphere can alter global circulation of the atmosphere (Solar-Terrestrial
Research for the 1980's, 1981).

The roles of ionospheric conductivity and Birkeland currents in regulat-
ing magnetospheric convection have been recognized for years, and recently
conductivity and current measurements have been used to compute convection
boundaries in magnetospheric models (Harel et al., 198la and references there-
in). The conductivity of the lonosphere, particularly in the D and E regions
at auroral latitudes, plays an important role in the formation of convection
electric fields, Joule heating, particle precipitation, and auroral-charged
particle acceleration. High-latitude Joule heating 18 an important source of
energy for the thermosphere. However, good global estimates of Joule heating
and conductivity are difficult to make with present observation techniques
(Harel et al., 1981b), and monitoring of ionospheric parameters on a global
scale, especially during magnetically active times, remains an important task

in magnetospheric physics.

Remote sensing of ionospheric density perturbations resulting from
precipitating 1-to-30-keV electrons can be accomplished by observing
bremsstrahlung x rays from satellitegs. Pertinent ionospheric parameters can
be computed by using electron spectra derived from bremsstrahlung x-ray

observations.




L ITI. EXPERIMENTAL TECHNIQUE

The data were obtained from instruments aboard the USAF DMSP-F2 satellite
(1977-044A), which was inserted in a nearly sun-synchronous polar orbit at an
altitude of =~ 830 km. The F2 satellite carried a low-energy auroral x-ray
instrument, providing measurements in fifteen integral energy channels from
1.4 to 20 keV (see Mizera et al., 1978).

Precipitating electron fluxes in eight energy channels from 1 to 20 keV
were measured each second by the J-package instrument. Images from the
optical line scanning sensor, sensitive to light in the 475-to-750-nm region,
were used to determine the longitudinal continuity of auroral forms away from

the satellite ground track.
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III. ANALYTICAL TECHNIQUE

‘Terrestrial x-ray fluxes above a few keV observed at satellite altitudes
are the result of magnetospheric electrons precipitating into the atmos-
phere. From the incident electron spectrum, pertinent ionospheric parameters
such as ionization density and conductivity can be derived. One technique
involving x-ray observations is to use their spectral characteristics to infer
the incident precipitating electron spectrum. The inferred precipitating
electron spectrum is then used as an input to a calculation of energy trans-
port through the atmosphere, from which energy deposition rates and ionization
rates can be determined as a function of altitude. Standard techniques exist
for computing the altitude profiles of energy deposition, given an incident
electron spectrum (Rees, 1963; Berger and Seltzer, 1972; Luhmann, 1977a), and
techniques for determining the initial electron spectrum from observed x-ray
spectra have also been discussed (e.g., Brown, 1971; Luhmann, 1977b; Walt
et al., 1979).

We have applied the method described by Brown (1971) to infer incident
electron spectra from observed DMSP bremsstrahlung x-ray spectra, even though
some aspects of the method are not strictly appropriate for the earth's
ionosphere. For example, atmospheric absorption and scattering of x rays are
not treated in this calculation, even though the absorption effects might be
significant for low-energy (~ 1 keV) x rays emitted at altitudes near 100
km. Brown's method basically involves the inversion of an integral rela-
tionship between the observed x-ray emission as a function of energy ¢(k) and

the incident electron flux as a function of particle energy J(T):
[ -]
(k) ~ [ Q(k,T) J(T) dT (n
k
where Q(k,T) is the bremsstrahlung cross section. If Q(k,T) takes the form of

the Bethe-Heitler nonrelativistic formula for x-ray emission (neglecting

Coulomb convections and shielding effects), whose energy dependence is of the

form

. .




1 1 +A
q(k,T) = 7 log +—3 (2)

where A = V' 1 - K/T

then Eq. (1) can be inverted. The resulting expression for the incident

electron spectrum takes the form

31y ~1 [ ot [+ 0K] gx) dx (3)
0

where Oi is a function involving the x-ray energy spectrum and its deriva-
tives and g(x) is a polynomial weighting function [see Brown, 1971; Eqs. (8)
through (12)].

Before the data from the DMSP x-ray instrument are applied to Eq. (3),
they are temporally accumulated to assure a statistically significant spec-~
trum (~ 100 counts in each energy channel). The accumulation interval is
typically only 3 sec (~ 20 km) in active regions. The x-ray spectrum is
logarithmically fit with a polynomial function of order n so that

n = minimum (4, m - 2) (4)

vhere m is the number of "clean" data channels. At times, energy channels
very near 3 keV are eliminated from the analysis because of obvious contami-

nation by the argon Ka emissions from the atmosphere.

The result is a logarithmic polynomial representing the incident-electron
spectrum. This inferred electron spectrum is passed through an energy trans-
port code (Luhmann, 1977a) that gives the energy deposition rate as a function
of altitude. Relevant ionospheric parameters are calculated from this

computed energy-deposition profile.
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IV. DISCUSSION

January 31, 1978 was a magnetically disturbed day on the basis of the
3-hr Kp magnetic index (Kp = 4 throughout the day). However, DMSP visible
images from 10:30 to 21:00 hr UT indicate only moderate optical emissions.

Figure la shows a composite of the DMSP-F2 optical imagery and the calcu-
lated electron-energy deposition rates as the satellite crossed the dawn-to-
midnight aurora. Midnight is on the upper right-hand corner of the photo-
graph. The lower-latitude patchy aurora on the left is associated with peak
electron fluxes in the few—-keV energy range. Near the poleward boundary, the
fluxes increase and approach 10 to 15 keV for their characteristic energy. On
spatial scales of 100 km or so, electrons at energies less than 10 keV con-
tribute mainly to the peak deposition rates. These characteristic electrons

deposit their energy above 105 km in altitude.

In Figure la, the energy deposition rates labeled “"electrons” are calcu-
lated by using 15-sec averages of precipitating l-to-20-keV electron fluxes
measured at the satellite. The deposition profiles labeled "x rays™ are based
on computed electron spectra using the techniques described in the preceding
section. The peak deposition rates are = 700 keV/cm3-sec. Assuming the peak
energy deposition occurs over a height of ~ 5 km, the energy flux is = 0.7
ergs/sec—cm2 at 105 km. Note that the calculated electrons from x rays mimic
well the measured electrons for the main deposition peak and the satellite

peaks.

Figure 1b shows data from the continuation of the auroral crossing on
January 31, 1978. Midnight is near the upper left-hand corner of the photo-
graph. Although the dusk visible auroral arcs in the premidnight sector are
fainter than the dawn aurora, the energy deposition rates are larger by over
a factor of two. The electrons associated with the dusk precipitation are
also more energetic than in the dawn crossing. Electrons associated with the
dusk arcs have peak fluxes near 13 keV, corresponding to peak deposition rates
near 102 km altitude. Again, the spatial morphology of the deposition rates

is almost one to one between x rays and electrons.
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In both the dawn and dusk crossings, the electrc~ deposition profiles

computed from the bremsstrahlung x rays are in excellent agreement with those
calculated from the measured electrons. On the basis of these energy deposi-
tion rates, electron densities and conductivities are computed by using the
standard techniques described earlier. Figure 2 shows the results of the
calculation of the electron density height profile for the peak deposition
rates during the dawn and dusk crossings on January 31, 1978. This calcu-
lation assumes that electron-ion pair production is balanced by recombination

loss, so that the time derivative of the density is zero.

The solid line in Fig. 2 represents the calculation of density for the
measured electron deposition, while the triangles show the density profile
computed from the electron deposition calculated from the x~ray inversion
technique for the dawn crossing. The dashed line and circles represent the
densities for the measured and calculated electron spectra, respectively, for
the dusk crossing. The calculations are for the peak deposition rates over
each local-time crossing. The shaded profile represents a typical midlatitude
density profile at night. This shows that the auroral zone densities can be

well over an order of magnitude larger than adjacent regions.

The final quantities of interest are the electrical conductivities that
are calculated from the electron densities. Again, standard techniques de-

scribed earlier are used to determine the Pedersen and Hall conductivities.

Noting the good agreement between the calculated and measured electron
densities in Fig. 2, we'd expect equally good agreement in the conductivity
calculations. The only exception is for high altitudes (> 115 km), where the
electron spectra calculated from x rays are deficient at low energies (~ 1
keV). This might be due in part to the x-ray absorption described earlier.
Atmospheric absorption of x rays is not treated in our spectral inversion
calculation, and this absorption effect might be important in cases where
electrons deposit their energy deep in the atmosphere, such as in the
energetic dusk-sector event. A deficiency of low-energy x rays results in an
underestimation of the lower-energy electron fluxes, which in turn produce a

lower density at higher altitudes.
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Figure 3a shows the Pedersen and Hall conductivities as a function of
altitude for the dawn aurora event on January 31, 1978, Again, the solid line

represents calculations based on the measured electron spectrum, and the tri-

angles represent those based on the inferred electron spectrum. The height-
integrated conductivitiesi(zﬂ, ZP) are also shown, with those in parenthesis
representing the latter calculations. The Hall conductivity estimate is

within 0.5% and the Pedersen conductivity is within 3% of the values computed

directly from the measured electron spectrum.

Figure 3b shows the conductivity profiles and integrated conductivities
for the dusk auroral crossing. The height-integrated Hall conductivity is 25%
larger and the Pedersen conductivity is 20X larger in the dusk aurorz than in
the dawn aurora, as a result of the more energetic and intense electron pre-
cipitation in the dusk aurora. Again, the agreement between measured electron
computed conductivities and inferred electron computed conductivities is
excellent. (That is = 1,32 for the Hall and ~ 7.3% for the Pedersen.)

14
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- V. SUMMARY

r.

S; Data from the optical line scanner, the electron J-package instrument,

ff and the low-energy x-ray sensor aboard the DMSP-F2 gatellite show that remote
- sensing of precipitating electron spectra by bremsstrahlung x rays can provide
\

. useful ionospheric parameters such as electron densities and conductivities.
'i: The technique presently being used to calculate the electron spectra from

f? x rays involves the inversion of the integral over the electron distribution
‘*

and the bremsstrahlung cross section.

Examples from a typical dawn and dusk auroral crossing by the DMSP-~F2
satellite provided sufficiently diverse electron spectral characteristics to
test the agreement between measured and inferred electron spectra. There are,
P to be sure, some difficulties in using experimental data in the mathematical
- inversion. One such example was the deficiency of x rays generated in the
lower-altitude atmosphere. Nevertheless, we have demonstrated that remote

sensing of x rays can provide reasonably accurate quantities such as total

’ energy, electron density, and conductivity in the E region of the auroral
- ionosphere.

:j Future endeavors involve different mathematical techniques to derive
:% electron spectra from x rays. These include using a library of standard

f functions such as Gaussian, exponential, and Maxwellian distributions to

5: represent the primary electron spectra. X-ray fluxes will be calculated and
i compared with the data and the distribution parameters will be varied for the

best agreement.

- The acquisition of the DMSP-F2 data was the first attempt to derive

;f electron spectra by remote sensing. Since the x-ray instrument pointed along
; the nadir, only x rays emitted near the ground track were detected. The next
»‘ generation of x-ray instruments, flown on the recently launched DMSP-F6,

. should provide global ionospheric parameters covering the high-latitude

ﬁﬁ ' regions of the earth from 1limb to 1limb, nearly 2400 km across.
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C- . LABORATORY OPERATIONS
ﬁ The Laboratory Operations of The Aerospace Corporation is conducting exper-
* fmental and theoretical investigations necessary for the evaluation and applica-
[ tion of scientific advances to new nfilitary space systeas. Versat{lity and
. flexibility have been developed to a high degree by the laboratory personnel in
2 . dealing with the many problems encountered in the nation's rsptdly developing
c. space systems. Expertise in the latest scientific developments is vital to the
L. acconplishment of tasks related to these problems. The laboratories that con-
tribute to this research are:
1 Aerophysics Laboratory: Launch vehicle and reentry serodynamice and heat
" transter, propulsion chemfistry and fluid mechanics, structural mechanics, flight
[' dynasice; high-temperature thermomechanics, gas kinetics and radistion; research

in environmental chemistry and contaaination; cwv and pulsed chemical laser
. development {including chemical kinetics, spectroscopy, optical resonators and
b beam pointing, atmospheric propagation, laser effects and countermeasures.

>. Cheniot and Physics Laboratory: Atmospheric chemical reactions, atmo-
spheric optics, attering, state-specific chemical resctions and radia-
tion transport {in rocket plumes, applied laser spectroscopy, laser chemistry,
bsttery electrochemistry, space vacuum and radiation effects on ssterials, lu-
brication and surface phenomena, thermionic emission, photosensitive aaterials
and detectors, atomic frequency standards, snd bioenvironmental research and
monitoring.

Electronics Research Laborstory: Microelectronics, GsAs low-noise and
power_ devices, semiconductor lssers, electromagnetic end optical propagation
phenosens, quantum electronics, laser communications, lidar, end electro-optics;
communication eciences, applied electronics, semiconductor crystal and device
physics, radiometric imaging; millimeter-wave and mtcrowave technology.

Information Sciences Research Office: Progream verification, program trans-
lation, performance-sensitive system design, distributed architectures for
spaceborne computers, fault-tolerant computer systems, artificial {ntelligence,
and sicroelectronice applications.

Materisls Sciences Laboratory: Development of new materials: wmetal matrix
composites, polymers, and new forss of carbon; cowmponent failure analysis and
reliability; fracture wechanics and stress corrosion; evalustion of materisls in
space environment; wmaterisle performance in space transportation systems; ansl-
yeis of systems wulnerability and survivability {n enemy-induced environments.

Space Sciences Laboratory: Atmospheric and i{onospheric physics, radiation
fros ¢t atsosphere, nsity and coamposition of the upper atmosphere, asurorae
snd airglow; magnetospheric physics, cosmic rays, generation and propagation of
plasma waves in the magnetosphere; snlar physics, infrared astronomy; the
effects of nuclear explosions, usgnetic storms, and solar activity on the
earth's atmosphere, fonosphere, and magnetosphere; the effects of optical,
electromagnetic, and particulate rsdiations in space on space systems.
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